

ADV

Your Reference		Description	
DIRECT EXPANSION COIL - 1650	50_C_S HR 24T 8NR 4	800A 12P 32NC	
Geometry 165050_C_S HR		4800 mm Nr. of ba	
Nr of Tubes per Row 24 Nr of Rows 8	Fin Pitch Nr of Circuits	12.0 mm 32 Tube Sh	
	W of Circuits	55.15	
		53.64	kW
Latent Capacity		1.51	kW
Mechanical & 1	harmal De		
Ouantity of Produced Water	ileilliai De	Sign Jei Vice	
Global Exchange Coefficient			W/(m2 K)
Cooling Solutio	ns -	4.5	
Air, Liquid, Act	ive & Passi	VP 0.3000	
Con internal v hume Tubes External Diameter	100 Ct 1 G551	173.0 16.5	
Tubes Internal Diameter			
Performance &	Capability	Test	
AIR SIDE			
Atmospheric Pressure / Altitude		1.01 / 0.00	bar A / m
Volumetric Air Flow			
Manufacturing	Service		
Face Velocity on the Coil		3.17	
Inlet Air Density		1.48	
Inlet Air Temperature		-34.0	
Inlet Air Relative Humidity			
Inlet Air Specific Humidity			
Inlet Air Enthalpy			kJ / kg
Outlet Air Temperature			
Outlet Air Relative Humidity		99.14	
Outlet Air Specific Humidity		0.10	g/kg AS
Outlet Air Enthalpy			kJ / kg
Pressure Drop			
Partial Exchange Coefficient		64	W/(m2 K)
Fouling Factor REFRIGERANT SIDE	Manifolds		(m2 K)/W Out: 105x3 [4 1/8"
Fluid		v Ci dCai	R404A
Mass Fluid Flow / Mass velocity		1443 / 67	kg/h / kg/(m2 s
Fluid Velocity (Gaseous Phase / Li		9.10 / 0.05	
			K
		-40.0	
Condensing Temperature - Middle		40.0	
Fluid Pressure Drop		7.61625	
Manifold Pressure Drop		0.3074238	
Total Pressure Drop Fluid Side			
Partial Exchange Coefficient			W/(m2 K)
Fouling Factor			(m2 K)/W

About Us

ADV Heat Exchanger Co.,Ltd, located in Changzhou, Jiangsu Province, China, is a professional customized manufacturer for various cooling solutions for Machinery, Electronic, Hydraulic & Lubricant System, Compressed Air & Gas, New Generation, Automotive and Various Industry Applications ...

We design, test and manufacture wide ranges of brazed aluminum coolers, copper and brass tube coolers, plate coolers, stainless steel coolers for Oil, Air (compressed and charged air) and Water/Glycol mixtures, according to the special application requirements.

Advantage, Development, Value is our mission and which we can always offer to our customers.

Since: 2017 Jan Staff: Above 60

Production Area: 2800 m²

Production Capability:10,000 set / Month

Location: Changzhou, China

Main Products:

1.Aluminum Bar&Plate Heat Exchanger

2.Tube Fin Heat Exchangerer

3.Cold Plate

4.Brazed Plate Cooler

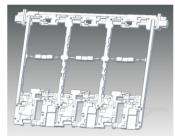
5.Shell&Tube Heat Exchanger

6.Air Separation Cooler

7. Hydraulic Lubricant System Cooling packages

8. Pipe and Fin Heat Exchanger

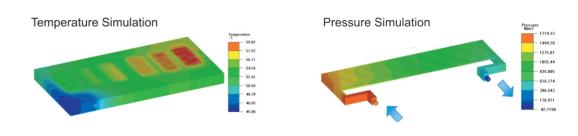
9. Fitting & Accessaries


Application

Some Facts You Should Know About ADV Engineering

Design

We have an experienced and reliable thermal engineering team who are the experts for thermal designing and manufacturing over 10 years, by partnering with OEM customers, we use our vast experience in thermal performance, material capability, and fluid dynamics to custom your design.



Simulation

Our Design & Simulation team will stay closely with our customers early in the design phase of development to be able to assist with modeling and simulation, and finally develop innovative thermal solutions.

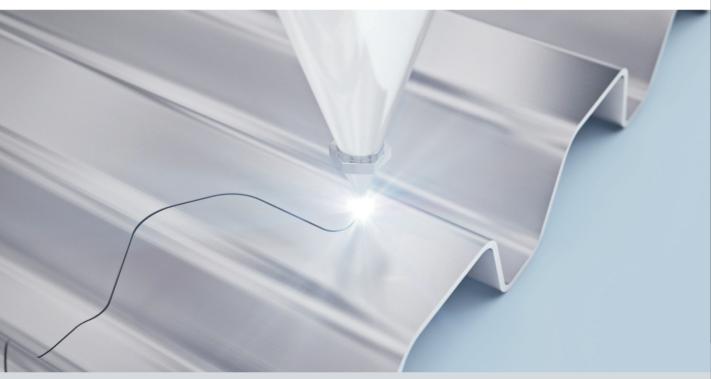
Testing

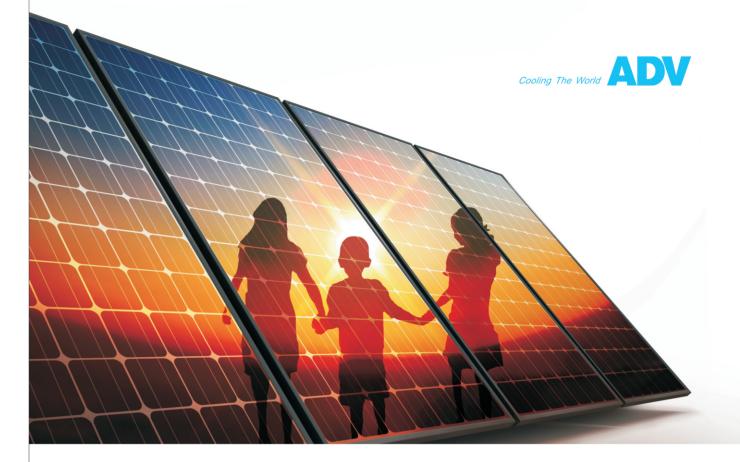
We can offer leak test (including helium test) , flow test, pressure test(the liquid Cooler can withstand burst pressure up to 90 bar), Anti-corrosion Test(We can reach C5 Anti-corrosion Standard), and Etc...

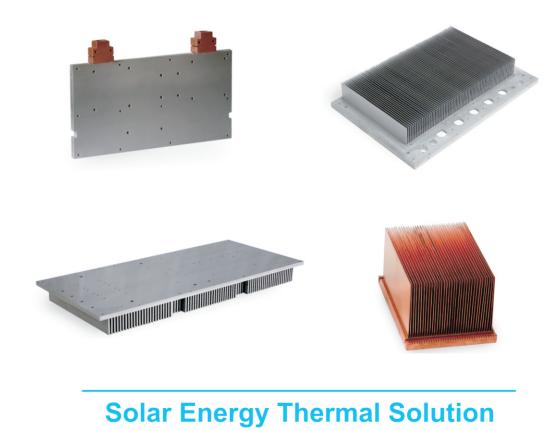
Manufacturing

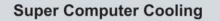
- CNC Machining
- Vacuum Brazing
- Friction Stir Welding
- Assembling

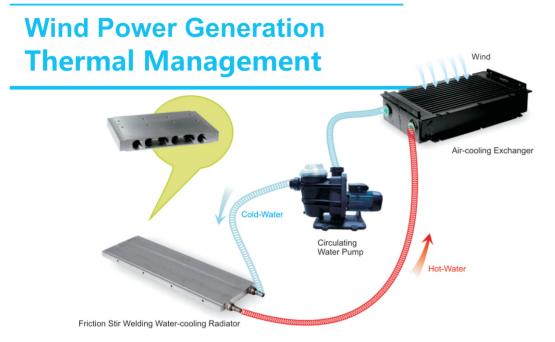
Certifications





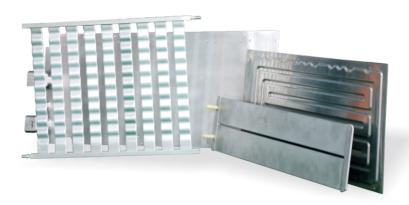

Laser Equipment Thermal Management





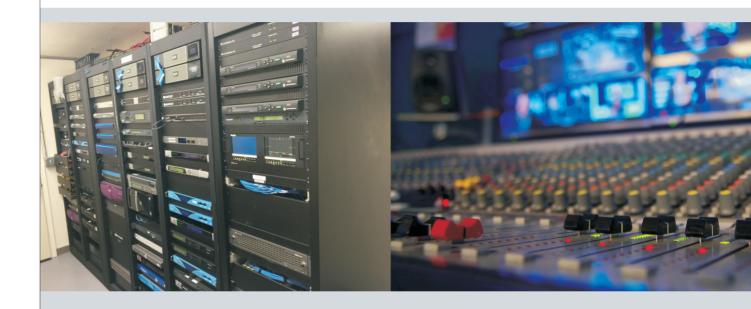
Innovation For Scientifit Computer Cooling

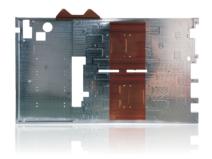
As computer chips get smaller and faster, they're getting hotter and hotter. Typically, almost 40% of a data center's electricity bill is because of its cooling equipment. To help reach the exaflop barrier and beyond, we are investing more efficent and better cooling solutions than traditional standard technology.



New Energy Vehicle Thermal Solution

Marine Electrical Application





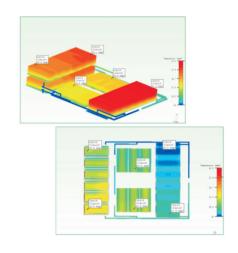
Mobile Communication & Broadcast Cooling Solution

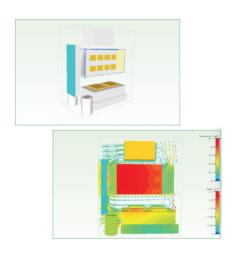
Medical Thermal Management Technologies

Selecting the proper medical thermal management improves performance and enables designers to achieve compact size, extended using life and meet touch temperature standards

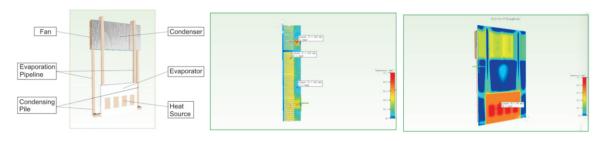
Applications

- Ablation Devices o Bioanalysis
- Bioconditioning o DNA Analysis
- Electrosurgery
- Imaging Scanners
- Lasers & LEDs
- Interventional Medicine (Minimally Invasive)





Custom System Solutions:


Liquid Cooling System:

Air Cooling System:

Phase Transitions System:

Service Experience

